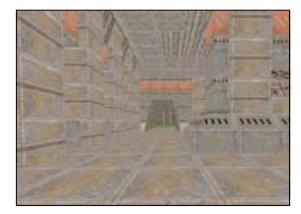


NVIDIA.

Extending Textures Beyond Simple Pixels

Kenneth L. Hurley

NVIDIA PROPRIETARY AND CONFIDENTIAL


Agenda

- Traditional Texture Mapping
- Cube Maps
- Encoding Data into Texture Maps
- Minnaert Lighting
- Brushed Metal
- Cloud Cover
- Low Dynamic Range Images
- High Dynamic Range Images

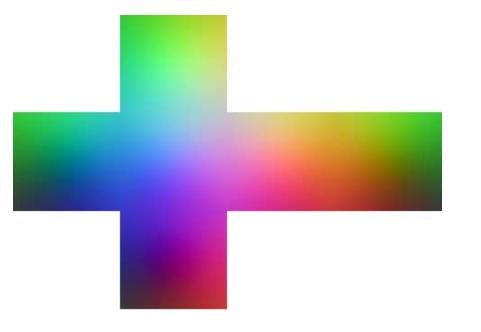
Traditional Texture Mapping

Base Texture (Diffuse)

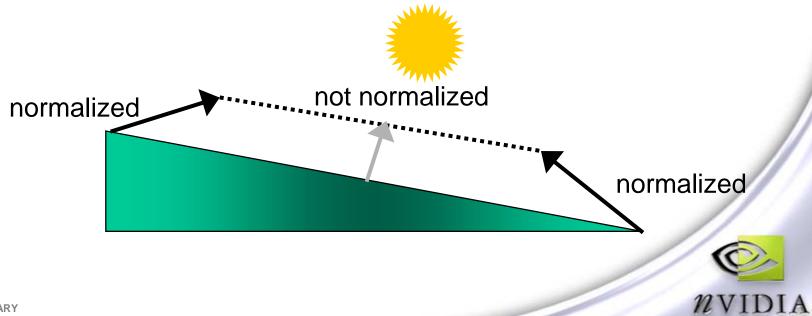
(modulate)

Light Maps

NVIDIA PROPRIETARY


Other uses for texture maps

- 2D Texture maps Look up tables
- Cube Maps Look up tables
- Masks
- Mathematical functions
- Temporary Storage
- Not just painted pixels


Cube Maps

- Can be used for a wide range of things
 - Reflections Similar to diffuse texture mapping
 - Pixel shader instruction texm3x3vspec
 - Normalization inside pixel shader / fixed function pipeline
 - why do we need this?

Why we need normalization map

- We're interpolating between vectors linearly
- Interpolated vector is not normalized
- It can be shorter than unit length
- Only noticeable when light is close to object

Cube Maps (Cont)

- Can be used for a wide range of things (continued)
 - Projective shadows
 - Why Cubemaps?
 - You decide. Use your imagination

Encoding Data into Texture Maps

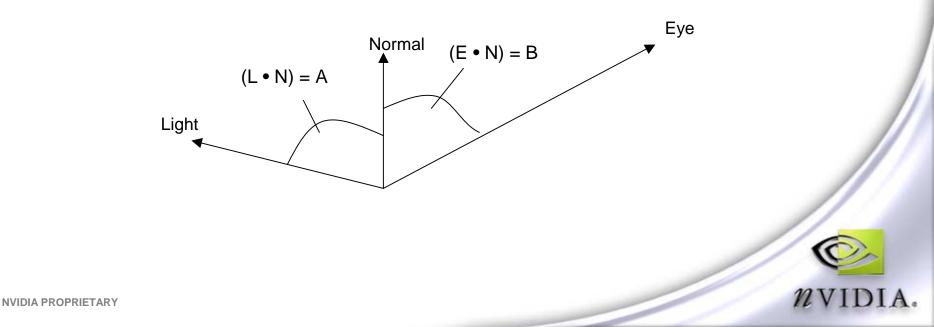
Several Tools are available

- NVIDIA'S Normal map generator
- DCM Diffuse Cube map generator ShaderX book and <u>www.shaderx.com</u> soon
- HDR Shop Encodes IBR lighting in cubemap
- Photoshop
- CPU Generated
 - Sample function inside code
 - write to texture map
 - Run Time
 - Off-Line Use DevIL package to read/write textures out to disk

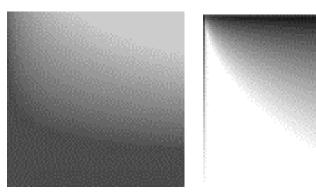
Encoding Data into Texture Maps

GPU Generated

Greg James – Dynamic Normals maps


- Minnaert, M., 1941. The reciprocity principle in lunar photometry. *Astrophysical Journal*, Volume 93, pp. 403-410.
- Subtle shading technique for Isotropic lighting effects
- Darkening limbs (edges, WRT eye/light)
- Portion of BRDF (Bidirectional Reflectance Distribution Function) calculations.

Minnaert Map

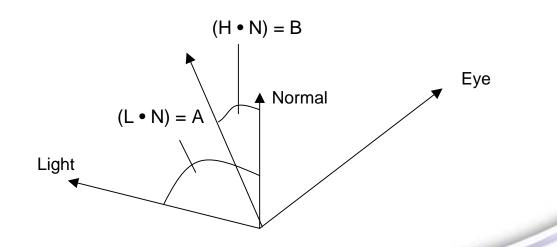

Map that is used to look up

- Color * (cos(A)^k * cos(B)^{1-k})
- A = Angle between Light and Normal
- B = Angle between Eye and Normal

Minnaert Map Creation

- Done on CPU
- Traditional way
 - Lock Texture
 - Write Pixels
 - Unlock Texture

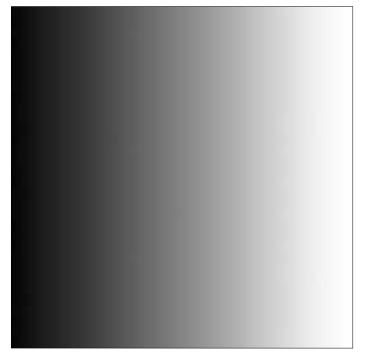
Minnaert Lighting Demo



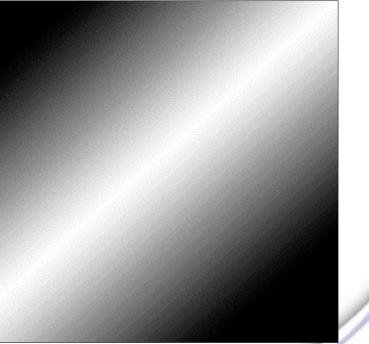
Brushed Metal

Map that is used to look up

- Color * (L N) Diffuse
- Color * (H N) Specular
- A = Angle between Light and Normal
- B = Angle between Half Angle and Normal



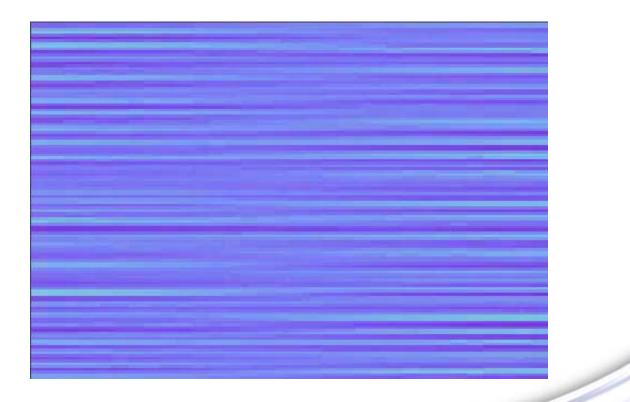
- Light look ups can be encode in the RGBA values of a texture
 - Build 2 Ramp textures in Photoshop
 - N L (Encode in RGB)
 - N H (Encode in Alpha)
 - Probably shouldn't be linear ramp as eye is more sensitive to changes in lower luminance values
 - N H doesn't need to be linear
- There are no traditional texture maps


Brushed Metal (Cont)

N • L lookup in RGB, N • H in alpha

RGB portion of bitmap

Alpha Portion of bitmap



Brushed Metal (Cont)

Combine with faked high resolution bump map

What is meant by fake?

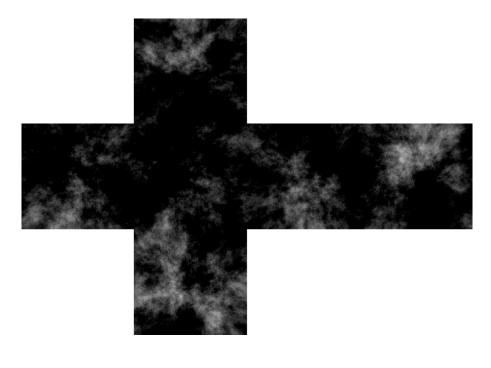


Code Sample (DX8)

tex t0	// fetch base texture
tex t1	// fetch normal map
<pre>texm3x2pad t2, t1_bx2</pre>	// $u = (t1=N) dot (t2=L)$
<pre>texm3x2tex t3, t1_bx2</pre>	// v = (t1=N) dot (t3=H)
	// fetch texture 4 at (u,v)
mov r1, t3	// RGBA diffuse,alpha into r1
mul r0, r1, t0	// Diffuse * base texture
mul r1, t3.a, t3.a	// spec * spec
mad r0, r1, c1, r0	// (spec * constant) + diffuse

Brushed Metal Demo

Cloud Cover


- Uses only one texture and one cube map for entire scene
- Why not just use projective texture?
- Simple vertex shader calculation using position of vertex

Cloud Cover (Cont.)

Cloud Texture created using fBM

Encoded into cube map all at once

Cloud Cover (Cont.)

Terrain uses cloud cube map to look up shadows

- Darkens diffuse texture map
- Sky sphere also uses same cube map
 - Normals are inverted and sphere is rendered inside out.

Sky Sphere Vertex Shader

;transform position

dp4 oPos.x, srcPosition, c[CV_WORLDVIEWPROJ_0]
dp4 oPos.y, srcPosition, c[CV_WORLDVIEWPROJ_1]
dp4 oPos.z, srcPosition, c[CV_WORLDVIEWPROJ_2]
dp4 oPos.w, srcPosition, c[CV_WORLDVIEWPROJ_3]

dp3 r0, srcNormal, c[CV_LIGHT_DIRECTION]

slt r1, r0, CV_HALF
mul r2, r1, CV_HALF
add r3, CV_ONE, -r1
mad destColor, r3, r0, r2

; mov destColor, CV_ONE

; Output texture coordinates mov destTexCoord, srcPosition

Sky Sphere Pixel Shader

ps.1.1

tex t0 // grab base texture

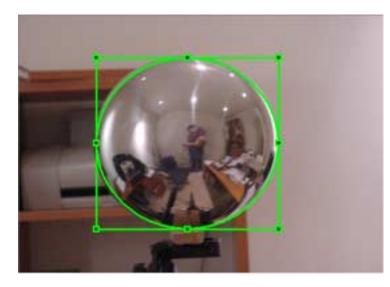
- ; multiply in sky color mad r1, c[CP_SKY_COLOR], 1-t0, t0
- ; and now lighting color

mul_satr0, v0, r1

Terrain Pixel Shader

- tex t0 // grab base texture
- tex t1 // grab cube map sky sphere texture
- ; mov_x2 t1, t1 // uncomment this line to make shadows darker
 ; and now lighting color
 - mul_x2 r1, v0, t0
- ; multiply in sky clouds shadow
 mul r0, r1, 1-t1

Cloud Cover Demo


More Information

Games Programming GEMS III Chapter

Low Dynamic Range Images

- Why do I call these low dynamic range?
- AKA Image Base Lighting
- Lighting encoded in cubemap
- Low precision but can be effective for Diffuse lighting

Take high resolution photographs of mirrored ball from as many as 6 angles

Low Dynamic Range Images

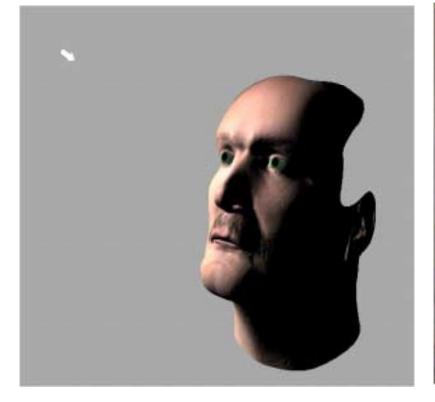
Align images into cubemap faces.

Low Dynamic Range Images

Run though diffuse convolution filter

NVIDIA PROPRIETARY

IBR Pixel Shader


ps.1.1

tex	t0	// fetch base texture
tex	t1	// fetch bump map
tex	t2	<pre>// fetch diffusion map using normal</pre>
tex	t3	<pre>// fetch specular using reflection</pre>
		//vector
mul	r0, t0, t2	<pre>// base map * diffusion map</pre>
mad	r1, t0.a, t3, r0	// specular environment cubemap *
		// specular base map + previous
mad	r0, r0, t1, r1	<pre>// now use diffusion bump map *</pre>
		// diffuse + previous

Results / Demo

Traditional Rendering

IBR Rendering

NVIDIA PROPRIETARY

IBR from High Dynamic Range Image

Another IBR Rendering

More Information

- Photo Realistic faces with Vertex and Pixel Shaders ShaderX book May 2002 Wordware Publishing
- DCM Diffuse cube map generator program on ShaderX CD or contact <u>khurley@nvidia.com</u>, if you must have it.

What is High Dynamic Range?

- The human visual system adapts automatically to changes in brightness
- In photography, shutter speed and lens aperture are used to control the amount of light that reaches the film
- HDR imagery attempts to capture the full dynamic range of light in real world scenes
- Measures radiance = amount of energy per unit time per unit solid angle per unit area W / (sr.m²)
- S bits is not enough!

- It effectively allows us to change the exposure after we've taken/rendered the picture
- Dynamic adaptation effects e.g. moving from a bright outdoor environment to indoors
- Allows physically plausible image-based lighting
- BRDFs may need high dynamic range
- Enables realistic optical effects glows around bright light sources, more accurate motion blurs

High Dynamic Range Images

- Eyes sensitivity to luminance suggests we must encode 9,900 values if we use linear steps for luminance
- If not linear then only 460 values are requires (9 bits)
- Eye is very sensitive to luminance changes
- Less sensitive to color changes
- Currently working on idea using pixel shaders in one pass

High Dynamic Range Images

Simon Green's talk gives information on OpenGL Implementation

Conclusion

Why are pushing this?

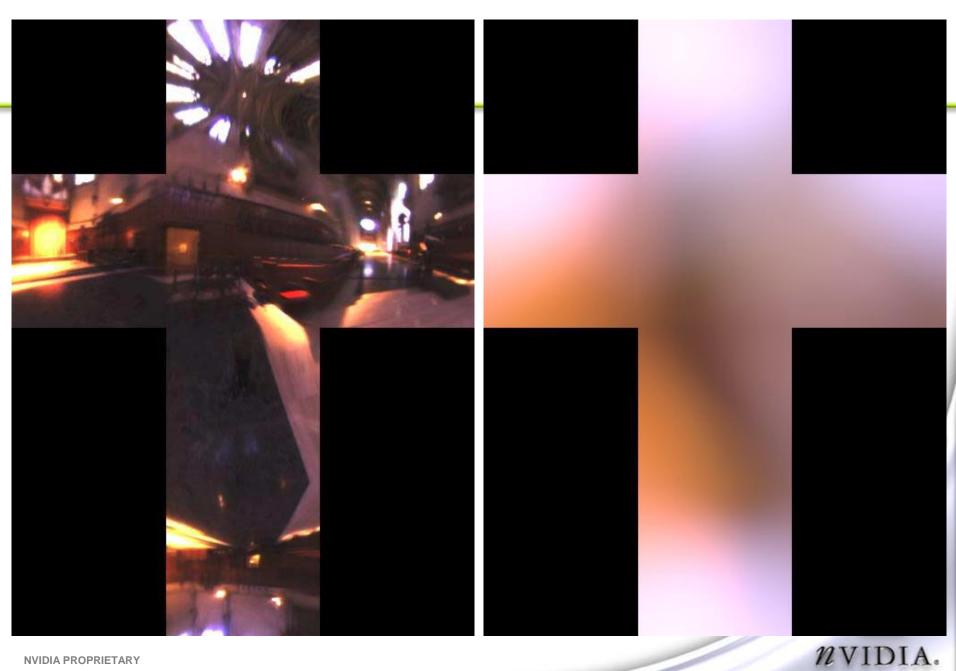
- Movie renders use a combination of procedural and painted textures
- The more procedural textures, the less time taken for artists
 - Now they can concentrate on the necessary painted textures
- Re-use Build a material library that can be used over and over again.

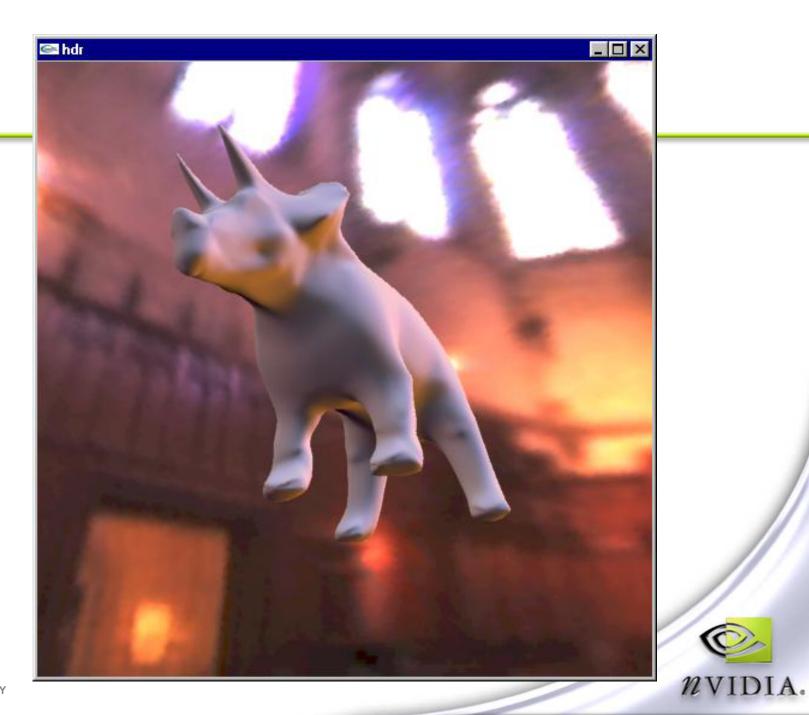
References

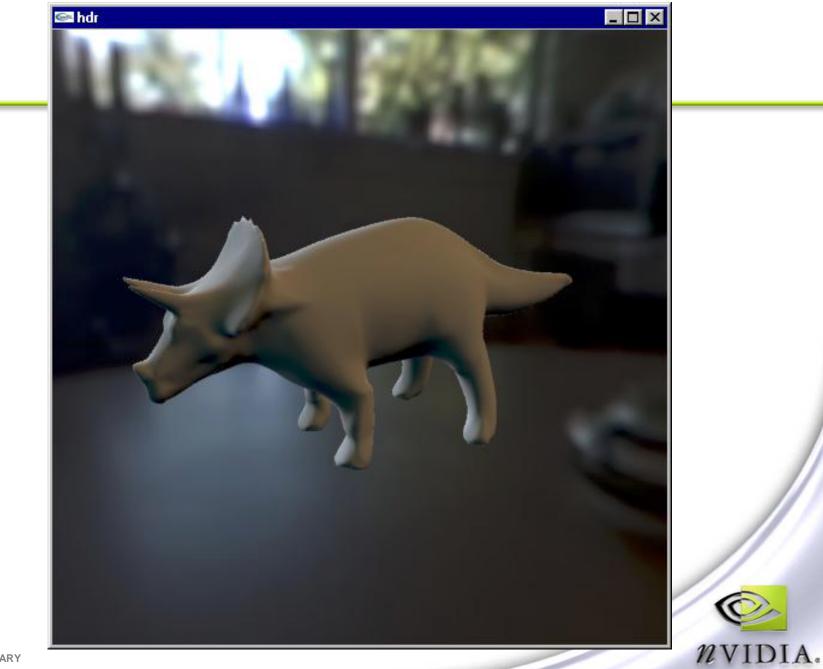
- Charles Poynton, A Technical Introduction to Digital Video. (New York:Wiley, 1996). Chapter 6, "Gamma" is available online at <u>http://www.inforamp.net/~poynton/PDFs/TIDV/Gamma.pdf</u> (Acrobat PDF format).
- Recovering High Dynamic Range Radiance Maps from Photographs", Debevec, Malik, Siggraph 1997
- <u>http://www.debevec.org/</u>
- ShaderX Book <u>http://www.shaderx.com</u>
- Games Programming Gems III

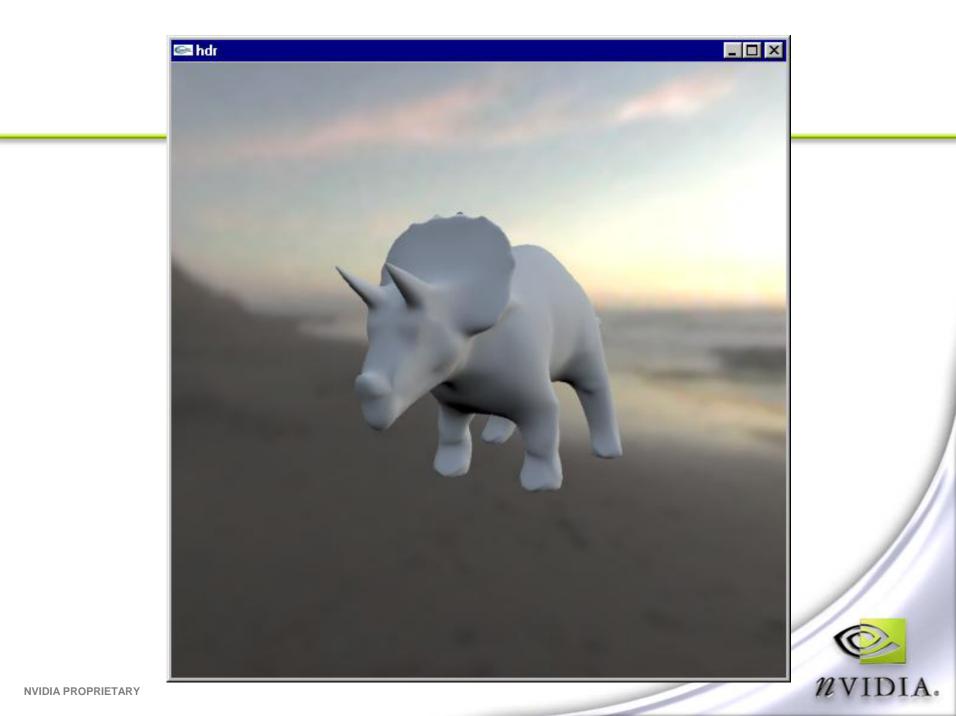
Questions?

E-mail: <u>khurley@nvidia.com</u>




Simon Greene's Slides on Image Based Lighting




- Lighting synthetic objects with "real" light
- An environment map represents all light arriving at a point for each incoming direction
- Sy convolving (blurring) an environment map with the diffuse reflection function (N.L) we can create a diffuse reflection map
- Indexed by surface normal N, this gives the sum of N.L for all light sources in the hemisphere
- Very slow to create
- Low freq cube map can be small e.g. 32x32x6
- HDRShop will do this for you

NVIDIA PROPRIETARY

References

- Recovering High Dynamic Range Radiance Maps from Photographs", Debevec, Malik, Siggraph 1997
- "Real-time High Dynamic Range Texture Mapping", Cohen, Tchou, Hawkins, Debevec, Eurographics Rendering Workshop 2001
- "Illumination and Reflection Maps: Simulated Objects in Simulated and Real Environments", Gene S. Miller and C. Robert Hoffman, Siggraph 1984 Course Notes for Advanced Computer Graphics Animation
- "Real Pixels", Greg Ward, Graphics Gems II P.80-83
- http://www.debevec.org/