
High Dynamic Range Images
Kenneth Hurley - CEO



What we’re going to cover

Introduction to High Dynamic Range (HDR)
DX7 implementation
DX8 implementations

Fake HDR
Using HDR for Image Based Lighting

DX9 Implementations
Fake HDR
Encoding Formats
HLSL implementations

More Information



HDR Intro

Developed by Paul E. Debevec and Jitendra 
Malik

http://www.debevec.org
Radiance can vary beyond precision of 8 bits
Encodes radiance in floating point values
Demo at site uses Geforce2
Commercial Licensing Required



HDR Intro

The human visual system adapts automatically to 
changes in brightness
In photography, shutter speed and lens aperture are used 
to control the amount of light that reaches the film
HDR imagery attempts to capture the full dynamic 
range of light in real world scenes
Measures radiance = amount of energy per unit time 
per unit solid angle per unit area  W / (sr * m2)

W = Radiant flux
sr = solid angle
m2 = area

8 bits is not enough!



Why do we need HDR

It effectively allows us to change the exposure after
we've taken/rendered the picture
Dynamic adaptation effects – e.g. moving from a bright 
outdoor environment to indoors
Allows physically plausible image-based lighting
BRDFs may need high dynamic range
Enables realistic optical effects – glows around bright 
light sources, more accurate motion blurs



HDR Terminology

Gaussian (Blur)
Blurs image 

averages pixels around a pixel by sampling

Exposure
Similar to photograph chemical process
Digitial photographs clamp captured light values
Multiple photographs are taken (exposures)
Recombined with software for fuller range of 
luminance values



HDR Terminology Continued

Tone Mapping
Tone mapping scales the RGB values of an image, 
which might be too bright or too dark to be 
displayed

Techniques used to map HDR images to RGB 8 bit 
monitor images

“key value” or “neutral value
The log-average luminance of the scene
DX9 Demos allow changing this value



HDR Encoding

Eyes sensitivity to luminance suggests we must encode 
9,900 values if we use linear steps for luminance
If not linear then only 460 values are requires (9 bits)
Eye is very sensitive to luminance changes
Less sensitive to color changes
OpenEXR Format



HDR on DX7

“Real-Time High Dynamic Range Imagery”, 
Cohen, Tchou, Hawkins, Debevec,
Eurographics 2001
Splits HDR images into several 8-bit textures

Recombines using register combiners on DX7 
capable hardware

Doesn’t automatically adjust exposure 
Requires different combiner setups for different 
exposure ranges, so exposure can only be changed 
on a per-primitive basis



HDR on DX7



HDR on DX8 class hardware

Developed by Simon Green at NVIDIA
DX8 that supports a 16-bit format known as HILO can 
be used
Stores 2 16-bit components: (HI, LO, 1)
Filtered by hardware at 16-bit precision
We can also use this format to store high(er) dynamic 
range imagery
Remap floating point HDR data to gamma encoded 16-
bit fixed-point range [0, 65535]
HILO only stores two components so we need two 
HILO textures to store RGB



HDR on DX8 class hardware

To display the image, we need to multiply the 
HDR radiance values by the exposure factor, 
and then re-map them to the displayable [0,255] 
range
This can be achieved using the texm3x2tex 
pixel shader operation 
Exposure is sent as texture coordinates, the dot 
product performs the multiply for both channels
We create a 2D texture that maps the result 
back to displayable values



HDR on DX8 class hardware

0: hilo = texture_cube_map(hdr_texture, s0, t0, r0)

1: dot1 = s1*hi + t1*lo + r1*1.0;  // = r_exposure*r + 0 + r_bias

2: dot2 = s2*hi + t2*lo + r2*1.0;  // = 0 + g_exposure*g + g_bias

color = texture_2d(lut_texture, dot1, dot2)

Psuedo Code

ps_1_1

tex t0      // Grab hilo data from cubemap

texm3x2pad  t1, t0   // = r_exposure*r + 0 + r_bias

texm3x2tex  t2, t0   // 0 + g_exposure*g + g_bias 

mov r0, t2

Pixel Shader code



HDR on DX8 class hardware

Requires 2 passes to render RGB, using 
D3DRS_COLORWRITEENABLE to mask off 
color channels
First pass renders R and G:

texcoord1 = (r_exposure, 0.0, r_bias) 
texcoord2 = (0.0, g_exposure, g_bias) 

Second pass renders B:
texcoord1 = (0, 0, 0)
texcoord2 = (b_exposure, 0.0, b_bias)



HDR on DX8 class hardware

Exposure .25

Exposure 0.0625

Exposure 0.015625



Image Based Lighting use HDR on 
DX8 class hardware

Lighting synthetic objects with “real” light
An environment map represents all light arriving at a 
point for each incoming direction
By convolving (blurring) an environment map with the 
diffuse reflection function (N.L) we can create a diffuse 
reflection map
Indexed by surface normal N, this gives the sum of N.L 
for all light sources in the hemisphere
Low freq - cube map can be small - e.g. 32x32x6
HDRShop will do this for you



Image Based Lighting use HDR on 
DX8 class hardware



Image Based Lighting use HDR on 
DX8 class hardware



Fake HDR on DX8 class hardware

Masaki Kawase techinque
Used in XBOX Wreckless: Yakuza Missions
Can be implemented in 1.1 shader

Blur filters up to 8 passes
Simple Tone map

LERPS between original and blurred image

DEMO, RGBA and RGBE



HDR on DX9 class hardware

Easier to implement
Floating point buffers
HLSL available



Realtime HDR on DX9 class 
hardware

Masaki Kawase is at it again
Demo



HDR on DX9 class hardware

Format possibilities
RGB16

16-bit per channel integer format
decoded.rgb = encoded.rgb dot max_value

RGBE
Compressed logarithmic values with E being shared exponent 
calculated from RGB

decoded.rgb = encoded.rgb * 2encoded.a

FP16
Partial precision floating point values

FP32
Full Precision floating point values



HDR on DX9 class hardware

Simple Code (ATI RenderMonkey Sample)
Render the scene with HDR values into a floating 
point buffer.
Down-sample this buffer to 1/4th size (1/2 width and 
1/2 height) and optionally suppress low values to get 
only brightest parts
Blur image (bloom filter) Best to do it X then Y, to 
reduce texture lookups
Tone map the blurred image after compositing it 
with the original image. 



Generic Vertex Shader

float4x4 matViewProjection;

struct VS_INPUT 

{

float3 Pos:      POSITION;
};

struct VS_OUTPUT 

{
float4 Pos:       POSITION;

float2 TexCoord : TEXCOORD0;

};

VS_OUTPUT vs_main( VS_INPUT In )

{

VS_OUTPUT Out;

Out.Pos.xy = sign(In.Pos);

Out.Pos.z = 1.0;

Out.Pos.w = 1.0;

Out.TexCoord.x = Out.Pos.x * 0.5 + 0.5;

Out.TexCoord.y = 1.0 - (Out.Pos.y * 0.5 + 0.5);

return Out;
}



HLSL Blur Horizontal Pixel Shader

sampler2D Src;

float4 gaussFilter[7] = 

{ 

-3.0, 0.0, 0.0,  1.0/64.0,

-2.0, 0.0, 0.0,  6.0/64.0,

-1.0, 0.0, 0.0, 15.0/64.0,

0.0, 0.0, 0.0, 20.0/64.0,

1.0, 0.0, 0.0, 15.0/64.0,

2.0, 0.0, 0.0,  6.0/64.0,

3.0, 0.0, 0.0,  1.0/64.0 

};

float texScaler = 1.0/128.0;

float texOffset = 0.0;

struct PS_INPUT 

{

float2 TexCoord : TEXCOORD0;

};



HLSL Blur Horizontal Pixel Shader 
(Cont)

struct PS_OUTPUT 

{

float4 Color : COLOR;

};

PS_OUTPUT ps_main( PS_INPUT In )

{

PS_OUTPUT Out;

float4 color = 0.0;

int i;

for (i=0;i<7;i++)

{

color += tex2D(Src,float2(In.TexCoord.x + gaussFilter[i].x * texScaler +
texOffset,

In.TexCoord.y + gaussFilter[i].y * texScaler +
texOffset)) *

gaussFilter[i].w;

} // End for

Out.Color = color * 4.0;

return Out;

}



Final Pixel Shader Tone Mapping

float Exposure;
sampler2D SrcHDR;
sampler2D SrcColor;

struct PS_INPUT 
{

float2 TexCoord : TEXCOORD0;
};

struct PS_OUTPUT 
{

float4 Color : COLOR;
};

PS_OUTPUT ps_main( PS_INPUT In )
{

PS_OUTPUT Out;

float4 color  = tex2D(SrcColor,In.TexCoord);
float4 scaler = tex2D(SrcHDR,In.TexCoord) * 2.0;

Out.Color = color * ( ( 1.0 + scaler.a ) * Exposure );

return Out;
}



Optimizations

Down-sample image first
Reduces the texture samples from 32 pixels to 8 
samples

Blur in X, then in Y
2n texture look-ups rather than n*n



Render Monkey Demo

DEMO



Final Thoughts

High Dynamic Range can be accomplished on all 
current hardware

Implementations available for DX7
Implementations available for DX8
Implementations available for DX9
So no excuses.

IBL or IBR
Can make use of HDR tools
Look very good

Precomputed Radiance Transfer



More information on HDR

Programming Vertex and Pixel Shader, 
Wolfgang Engel ISBN 1-58450-349-1
http://developer.nvidia.com
http://www.ati.com/developer
DX9 Summer 2004 SDK
http://www.debevec.org
Masaka Kawase website 
http://www.daionet.gr.jp/~masa/rthdribl/



Software support for HDR

HDRShop -
http://www.ict.usc.edu/graphics/HDRShop/
Rendermonkey – http://www.ati.com/developer
NVSDK – http://developer.nvidia.com
OpenEXR http://www.openexr.net/
DX9 Summer 2004 SDK



Questions

klhurley@signaturedevices.com

?


